
PTS/DeviceNet Interface Software

User’s Manual

Issue 2

March 1999

(MAN538)

Issue 2 PTS/DeviceNet Interface User’s Manual

Copyright © 1999 Quin Systems Limited Page 2

Contents

1. Introduction 3
1.1 General 3

2. Configuring the PTS for DeviceNet 4
2.1 Hardware 4
2.2 Software License Key 4
2.3 Configuration Shell 5
2.3.1 Accessing the Shell 5
2.3.2 Changing the Baud Rate 6
2.3.3 Changing the MAC ID 6
2.3.4 Mapping Variables 6
2.3.5 Variable Write Behaviour 7
2.3.6 Displaying Statistics 8
2.3.7 Logging Messages 8

3. Programming the PTS 10
3.1 Host I/O 10
3.2 Variables 11

4. PTS Device Profile 12
4.1 Overview 12
4.2 Device Description 13
4.3 Object Model 13
4.3.1 Classes 13
4.3.2 Model Description 13
4.4 I/O Access 16
4.4.1 I/O Input Message Format 16
4.4.2 I/O Output Message Format 17
4.5 Single Variable Access 18
4.5.1 Single Variable Read Message Format 18
4.5.2 Single Variable Write Message Format 19
4.6 Block Variable Access 20
4.6.1 Block Variable Read Message Format 20
4.6.2 Block Variable Write Message Format 22

5. Electronic Data Sheet 24

6. Hardware Configuration 26
6.1 DeviceNet Interrupts 26
6.2 DeviceNet Connections 26
6.3 CPU360 Board Layout 27

A Statistics Display 28

B Logged Message Format 30

Issue 2 PTS/DeviceNet Interface User’s Manual

Nbus

strial
iceNet
device
ontains
., and
ly I/

ection
I/O
1. Introduction

1.1 General

This manual relates to the following versions of software in the PTS unit:

DeviceNet Interface Version 1.2
PTS Host software Version 1.9.2 or later

This document describes the PTS/DeviceNet interface implemented on the second CA
interface of the CPU360 (PTS Mk2 or Machine Controller).

DeviceNet is a low level network based on CANbus which is designed to connect indu
devices (such as limit switches, photoelectric sensors, etc.) to a PLC or PC. The PTS Dev
implementation allows the PTS to be connected to DeviceNet and appear as a slave
using the Predefined Master/Slave Connection Set of connections. The Predefined Set c
one connection for explicit messages to allow read/write of parameters, variables, etc
several different I/O connections to allow read/write of discrete I/O bits. Currently the on
O connection type implemented is a polled connection.

The remote PLC/PC can access a fixed set of PTS variables via the explicit message conn
and host level I/O via the I/O connection. The host level I/O provides 8 groups of virtual
bits which can be used for DI lines, SO, CO, RI, RO, etc.
Copyright © 1999 Quin Systems Limited Page 3

Issue 2 PTS/DeviceNet Interface User’s Manual

pins
per

been
tained
e SK

main

above.
cenet

eeded
to the
2. Configuring the PTS for DeviceNet

2.1 Hardware

Before switching the PTS on check that the DeviceNet interrupt link is installed between
11 & 12 of jumper J11 as described in section 4.1, DeviceNet Interrupts. Without this jum
link the DeviceNet software will not work.

2.2 Software License Key

The software for the DeviceNet interface will not operate unless a software key has
entered to enable this option. The software key is different for each PTS and can be ob
from your sales office given the system serial number which can be found by using th
command as shown below.

To enable the software the following command should be entered on Port A (the
programming port) in privileged mode. You enter the text inbold while the PTS displays
something similar to the rest.

1> SK
Serial number: 006545
Feature Version Key
New feature ? devicenet
Version ? 1.1
Key ? abcd
OK

Note that the feature name (devicenet) must be entered in lower case exactly as shown
Note also that it is necessary to turn the power off and back on again to run the Devi
software.

If the software needs to be disabled, first make a note of the software key in case it is n
in the future. Then proceed as above but simply press the Return key in response
“Version ?” prompt as follows.

1> SK
Serial number: 006545
Feature Version Key
devicenet 1.1 ABCD
New feature ? devicenet
Version ?
Feature devicenet removed
Copyright © 1999 Quin Systems Limited Page 4

Issue 2 PTS/DeviceNet Interface User’s Manual

lows
the
s.

ged

help

ftware
2.3 Configuration Shell

2.3.1 Accessing the Shell

The DeviceNet configuration shell is a command interface specific to DeviceNet which al
you to configure the MAC ID and baud rate for DeviceNet as well as displaying
communications status and logging DeviceNet message packets for diagnostic purpose

To enter the shell type the DQ command at Port A (the main programming port) in privile
mode:

1> DQ

dns>

The dns> prompt shows that the configuration shell is ready for a new command. Typing
makes the shell display a list of available commands as follows:

dns> help
baud <baudrate> Set DeviceNet baud rate
default Map default variables
disp <num> Display <num> logged messages
list List variable mapping
log <num> Set message log to <num> messages
macid <id> Set DeviceNet MAC Id
map <var> <idx> Map variable (at index)
quit Quit from this shell
stats Display DeviceNet statistics
unmap <var> Unmap variable
wa <var> Set variable to write always
woc <var> Set variable to write on change
help Display this list

If DeviceNet is not enabled an error message is displayed instead:

1> DQ

DeviceNet is not enabled

1>

In this case you need to enter a software license key as described in the section So
License Key and cycle the power to the PTS to start the DeviceNet software.
Copyright © 1999 Quin Systems Limited Page 5

Issue 2 PTS/DeviceNet Interface User’s Manual

5,
0 kB.

the
e new
he new
likely

ve a

the
e new

nd the
n it is
AC

V1 up
lt case
er 50.
e

2.3.2 Changing the Baud Rate

The DeviceNet baud rate can be set using thebaudcommand. The baud rate can be set to 12
250 or 500 kB. The following example shows how to change the baud rate from 125 to 50

dns> baud
Baud rate 125k

dns> baud 500
OK

Entering the baud command without a value displays the current setting. Entering
command with a value causes the setting to be changed. The shell displays OK when th
value has been validated, communications have been restarted at the new rate and t
setting has been saved to non-volatile memory. If the shell does not display OK then it is
that the new baud rate is not correct or the PTS is not connected to DeviceNet.

2.3.3 Changing the MAC ID

The MAC ID is the address of a unit on the DeviceNet. Each unit on the network must ha
unique MAC ID between 1 and 63. The MAC ID of the PTS can be changed using themacid
command. The following example shows how to change the MAC ID from 25 to 30.

dns> macid
MAC Id 25

dns> macid 30
OK

Entering the macid command without a value displays the current setting. Entering
command with a value causes the setting to be changed. The shell displays OK when th
value has been validated, communications have been restarted with the new MACID a
new setting has been saved to non-volatile memory. If the shell does not display OK the
likely that another unit with the same MAC ID is already on DeviceNet and the duplicate M
ID check has failed.

2.3.4 Mapping Variables

You can access up to 50 PTS variables over DeviceNet. By default these variables are $
to $V50 and are accessed from DeviceNet by their index or instance number. In the defau
variable $V1 is instance number 1 and so on up to variable $V50 which is instance numb
The instance number and name of all the available variables can be displayed by thlist
command as shown in the following example.
Copyright © 1999 Quin Systems Limited Page 6

Issue 2 PTS/DeviceNet Interface User’s Manual

le is
riable

he PTS
ble is
ber, is

tance

the
ay be a
ble’s
on the
et by
sent

ther
e the
dns> list
Index Var WOC
 1 V1 ON
 2 V2 ON
 3 V3 ON
 4 V4 ON
 5 V5 ON

Thedefault command can be used to reset the PTS to use the default variables.

dns> default

If the default set of variables is not what you want it is possible to change which variab
mapped at any index or instance number. For example to map variable $SPD to va
instance number 10 use themap command as shown below.

dns> map spd 10
dns> list
Index Var WOC

 10 SPD ON

In this case accessing variable instance number 10 from DeviceNet actually accesses t
variable $SPD. If there is already a variable mapped at instance number 10, the old varia
removed and the new variable replaces it. If the second parameter, the instance num
omitted from themap command the variable is mapped at the first free instance number.

It is also possible to remove a mapped variable using theunmap command as shown below.

dns> unmap spd

This removes variable $SPD. Assuming $SPD was mapped at instance number 10, theunmap
command leaves instance number 10 without an attached variable. Any writes to ins
number 10 will be ignored and any reads will return zero.

2.3.5 Variable Write Behaviour

When a particular variable is written to from DeviceNet it is often not desirable to write to
mapped PTS variable unless the value has changed. This is because the variable m
trigger variable and every write by the DeviceNet scanner would cause the trigger varia
command string to be executed. At high scan rates this would put an unnecessary load
PTS which could slow down more important operations. Because of this variables are s
default to "write on change", in other words the variable is only written to when the value
by the scanner has changed. This is indicated in the output from thelist command when the
WOC column is set to ON. The alternative is to set the variable to "write always", in o
words the variable is always written to when a value is sent by the scanner. In this cas
WOC column is set to OFF.
Copyright © 1999 Quin Systems Limited Page 7

Issue 2 PTS/DeviceNet Interface User’s Manual

ing

he

".

d the

eNet
an use
the

ffer in

ffer
The woc command is used to set variables to "write on change" as shown in the follow
example.

dns> woc spd

This sets variable $SPD to "write on change". If the variable is omitted from thewoccommand
then all current variables and any mapped subsequently are set to "write on change". Twa
command is used to set variables to "write always" as shown below.

dns> wa
Set WOC flag on ALL variables ? (Y/N) y
OK

This command sets all current variables and any mapped subsequently to "write always

2.3.6 Displaying Statistics

Thestatcommand allows you to view some statistics of the DeviceNet performance an
state of the connections. The following example shows a typical display:

dns> stat
Version 1.1
Packets Received 2 Transmitted 5 Errors 1
Fragment msgs OK 0 NAKS 0 retries 0 timeouts 0
States Estab Closed Closed
EPRs 0 0 0

The display shows the software version followed by total counts of the number of Devic
message packets received and transmitted and a count of the number of errors. You c
these numbers to find out how well the DeviceNet link is performing. A full description of
statistics display is given in Appendix 1.

2.3.7 Logging Messages

For advanced diagnostic work you can log DeviceNet messages to a message bu
memory. The size of the buffer is limited but it is designed to always hold the lastn messages
wheren is specified by thelog command. The following example shows the message bu
being set to hold the last 100 messages:

dns> log
Buffer size 0

dns> log 100
Copyright © 1999 Quin Systems Limited Page 8

Issue 2 PTS/DeviceNet Interface User’s Manual

ce the
ix 2.
The messages can be displayed at any time by using thedispcommand. The following example
shows the disp command being used to display the last 10 messages:

dns> disp 10
2544.187 RX C0:9A C1:5A A0:99 A1:C0 CF:50 02 4C 03 01
01
2544.187 TX C0:A5 C1:65 A0:99 A1:60 CF:48 02 94 0B 02
2551.843 RX C0:9A C1:5A A0:99 A1:C0 CF:60 42 4B 03 01
01 02
2551.843 TX C0:A5 C1:65 A0:99 A1:60 CF:38 42 CB 00
2551.902 RX C0:9A C1:5A A0:99 A1:80 CF:70 02 10 05 01
09 00 00
2551.902 TX C0:A5 C1:65 A0:99 A1:60 CF:48 02 90 00 00

In this example only six messages are displayed because only six have arrived sin
message buffer was set up. A full description of the message display is given in Append
Copyright © 1999 Quin Systems Limited Page 9

Issue 2 PTS/DeviceNet Interface User’s Manual

r node
ilarly
S host
roups
e the

ds as

cute
ng host
3. Programming the PTS

3.1 Host I/O

The PTS host I/O bits map onto the DeviceNet discrete I/O bits such that when the maste
writes to an output bit the result appears in the corresponding PTS host input bit. Sim
when the master node reads an input bit it gets the contents of the corresponding PT
output bit. The PTS currently supports 8 host input groups (10 - 17) and 8 host output g
(10 - 17). Note that the host I/O is system wide and is not channel or node specific lik
standard I/O.

The host inputs are supported by a subset of the normal input commands as follows:

• BIg:[n] Inhibit function input.

• DIg:n /... Define function input (restricted).

• EIg:[n] Enable function input.

• IIg:n If input true do command line.

• LIg List input line definitions.

• MIg:[n] Mask function input.

• RIg:[n] Read input line(s) in group g.

The host outputs are similarly supported by a subset of the normal output comman
follows:

• COg:[n] Clear output line n in group g.

• IOg:n If output true do command line.

• LOg List output line definitions.

• ROg:[n] Read output line state(s) in group g.

• SOg:[n] Set output line n in group g.

The following example shows host input line 10:5 being defined as a function input to exe
sequence 200. When the DeviceNet master sets output number 5 then the correspondi
input is set and the function input is triggered to execute sequence 200.

DI10:5+/XS200
Copyright © 1999 Quin Systems Limited Page 10

Issue 2 PTS/DeviceNet Interface User’s Manual

V1 to
ster is
start

m and
for the

o set a
uch as
rigger

ed as
lass.

ing

le the
000.
age is

wing

ands
s the
3.2 Variables

The DeviceNet interface supports access to a number of predefined PTS variables ($
$V50) which are accessed using the Explicit message mechanism. The DeviceNet ma
able to access variables individually or to access a block of variables by specifying the
point and number of variables to be read/written.

The variable database is a centralized facility which is accessible to all tasks in the syste
holds a set of integer variables. Because variables are generally accessible, it is possible
user to change a variable via DeviceNet and for the variable to be used subsequently t
motor parameter in the PTS. Similarly a variable can be set to some motor parameter, s
the position, which can then be read over DeviceNet. A variable can also be set up to t
execution of a command string on the PTS.

In the PTS/DeviceNet interface variables $V1 to $V50 are used with $V1 being access
instance #1 of the Variable class up to $V50 which is accessed as instance #50 of the c

A variable can be set to a constant value using ‘=’ (equals). For example the follow
command sets the variable $SPD to a value of 5000.

1> $SPD=5000

A variable can be used in place of a numeric parameter in most commands. For examp
following command sets the velocity to the value of the variable $SPD which is currently 5
If the variable has not been assigned a value, then the “undefined variable” error mess
displayed.

1> SV$SPD

Conversely it is possible to query a parameter and place the result in a variable. The follo
example updates variable $SPD with the current velocity value.

1> $SPD=SV

A variable can be defined as a trigger variable so that when it is updated a string of comm
is executed. The following example defines $SPD as a trigger variable which cause
velocity to be set to the value of $SPD each time the variable is updated.

1> $SPD>CH1/SV$SPD
Copyright © 1999 Quin Systems Limited Page 11

Issue 2 PTS/DeviceNet Interface User’s Manual

vice
l (see

bjects
objects
ment

t has
ributes
4. PTS Device Profile

4.1 Overview

DeviceNet units are described by a device profile which is a formal definition of the de
behaviour, I/O data and configuration data. The device profile consists of the object mode
below), the I/O data format, the configuration data and the interface to that data.

The Object model specifies:

• The components that make up the unit

• The externally visible behaviour of the unit

• How the components fit together to provide the required behaviour

• The information which can be sent to or read from the components

The components mentioned above are represented by Objects in the Object model. O
which are of the same type are said to belong to the same Class. This means that all the
in a given class hold the same type of information, provide the same services and imple
the same behaviour. From a practical point of view, if you know what attributes an objec
and what services it provides, you can use DeviceNet messages to read or write the att
or invoke the services.

The rest of this chapter is the formal device profile for the PTS.
Copyright © 1999 Quin Systems Limited Page 12

Issue 2 PTS/DeviceNet Interface User’s Manual

PTS
time

e PTS
neral
s can
status

licit

ber of

ia the
plicit
access

-
ia-

 of

S.

ria-

bly.
4.2 Device Description

The PTS controls the position and velocity of one or more electric motors. In typical
applications the position/velocity profiles are either pre-defined or can be calculated at run
so there is no need to control these via DeviceNet. Instead the DeviceNet interface to th
operates at a higher level providing access to a set of virtual I/O lines and a set of ge
purpose variables. The I/O lines can be used for control and signalling while the variable
be used to set operational parameters (such a speed, length of cut) and to return
information.

The PTS is a Group 2 only slave device without UCMM and supports the Poll I/O and Exp
connections from the Predefined Master/Slave Connection Set.

4.3 Object Model

4.3.1 Classes

The table below shows the classes which are supported by the PTS along with the num
objects within each class and a description.

4.3.2 Model Description

The I/O Assembly object provides access to the Host I/O and the variables in the PTS v
Poll I/O connection. The Variable objects provide access to the PTS variables via the Ex
message connection and the Message Router. The Variable Assembly object provides
to blocks of PTS variables.

Class
Number of

Objects
Description

Assembly 2 The I/O assembly provides access to the Host I/O and varia
bles. The Variable assembly provides access to blocks of var
bles.

Connection 2 The PTS implements the Poll I/O and Explicit connections
from the Predefined Master/Slave Connection Set.

DeviceNet 1 The DeviceNet object provides the configuration and status
the physical connection to DeviceNet.

Identity 1 Provides identification and general information about the PT

Message
Router

1 Provides a message connection point for all the objects and
classes in the PTS.

Variable 0 to 50 Each variable object provides read/write access to a PTS va
ble. Blocks of variables can be accessed via the variable
assembly. Variables can also be accessed via the I/O assem

Table 1: DeviceNet Classes
Copyright © 1999 Quin Systems Limited Page 13

Issue 2 PTS/DeviceNet Interface User’s Manual

nd the
The diagram below shows the objects and classes within the PTS/DeviceNet Interface a
connections between them.

Figure 1. PTS/DeviceNet Interface Object Model

The table below shows the DeviceNet objects along with their class and instance IDs.

Object Class ID Instance ID

DeviceNet 03hex 1

Identity 01hex 1

Explicit Connection 05hex 1

I/O Connection 05hex 2

Table 2: PTS Object IDs

Connection Class

Message Router

#1

Assembly Class

Variable
 Assy

 I/O
 Assy

 Polled
 I/O

 Explicit
Message

DeviceNet Class

#1

Identity Class

#1

DeviceNet

Variable Class

Variable
 #1
Copyright © 1999 Quin Systems Limited Page 14

Issue 2 PTS/DeviceNet Interface User’s Manual
Message Router 02hex 1

I/O Assembly 04hex 1

Variable Assembly 04hex 3

Variable 64hex 1 to 50

Object Class ID Instance ID

Table 2: PTS Object IDs
Copyright © 1999 Quin Systems Limited Page 15

Issue 2 PTS/DeviceNet Interface User’s Manual

ost I/
line is
stance
. The
t input

nput
e no
is to
nge or

ter 2,
4.4 I/O Access

4.4.1 I/O Input Message Format

The I/O input command message consists of 8 data bytes which map directly on to the H
O virtual input lines. When a bit is set in the command message the corresponding input
set and vice versa. The message also contains 6 bytes which specify the index or in
number of a variable to be read and the index and value of a variable to be written
following table shows the correspondence between the bits in the message and the Hos
lines and the variables.

The input variable index specifies the index of a PTS variable to be written and the i
variable value bytes specify the value to be written to it. If the index is zero or out of rang
variable is written. The output variable index specifies the index of a PTS variable which
be read and returned in the I/O output response message. If the index is zero or out of ra
does not correspond to a valid variable no variable is read.

The mapping between the variable index and the variable name is described in chap
Configuring the PTS for DeviceNet.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 10:8 10:7 10:6 10:5 10:4 10:3 10:2 10:1

1 11:8 11:7 11:6 11:5 11:4 11:3 11:2 11:1

2 12:8 12:7 12:6 12:5 12:4 12:3 12:2 12:1

3 13:8 13:7 13:6 13:5 13:4 13:3 13:2 13:1

4 14:8 14:7 14:6 14:5 14:4 14:3 14:2 14:1

5 15:8 15:7 15:6 15:5 15:4 15:3 15:2 15:1

6 16:8 16:7 16:6 16:5 16:4 16:3 16:2 16:1

7 17:8 17:7 17:6 17:5 17:4 17:3 17:2 17:1

8 Output variable index (1 to 50)

9 Input variable index (1 to 50)

10 Input variable value least significant byte

11 Input variable value byte 2

12 Input variable value byte 3

13 Input variable value most significant byte

Table 3: I/O Input Message Format
Copyright © 1999 Quin Systems Limited Page 16

Issue 2 PTS/DeviceNet Interface User’s Manual

Host I/
ssage
ue of a
dence

input
value

index
ue bytes
riable
4.4.2 I/O Output Message Format

The I/O output response message consists of 8 data bytes which map directly on to the
O virtual output lines. When an output line is set the corresponding bit in the response me
is set and vice versa. The message also contains 6 bytes which hold the index and val
PTS variable being read by the scanner. The following table shows the correspon
between the bits in the message and the Host output lines and the variable.

The output variable index corresponds to the output variable index specified in the
command message and indicates which PTS variable is being read. The output variable
bytes give the value of the variable being returned to the scanner. If the output variable
in the output response message is zero then the variable has not been read and the val
are not valid. This can occur is no variable was requested (index was zero), the output va
index was out of range, or the requested variable did not exist.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 10:8 10:7 10:6 10:5 10:4 10:3 10:2 10:1

1 11:8 11:7 11:6 11:5 11:4 11:3 11:2 11:1

2 12:8 12:7 12:6 12:5 12:4 12:3 12:2 12:1

3 13:8 13:7 13:6 13:5 13:4 13:3 13:2 13:1

4 14:8 14:7 14:6 14:5 14:4 14:3 14:2 14:1

5 15:8 15:7 15:6 15:5 15:4 15:3 15:2 15:1

6 16:8 16:7 16:6 16:5 16:4 16:3 16:2 16:1

7 17:8 17:7 17:6 17:5 17:4 17:3 17:2 17:1

8 Not used

9 Output variable index (1 to 50)

10 Output variable value least significant byte

11 Output variable value byte 2

12 Output variable value byte 3

13 Output variable value most significant byte

Table 4: I/O Output Message Format
Copyright © 1999 Quin Systems Limited Page 17

Issue 2 PTS/DeviceNet Interface User’s Manual

ance of
nce ID
the

essage
if the
essage
4.5 Single Variable Access

4.5.1 Single Variable Read Message Format

The single variable read message is sent as an explicit message to the appropriate inst
the Variable class. The instance ID is the same as the variable number, so that the insta
for $V1 is 1, for $V10 is 10, etc. The service code used is READ_VAR (50). The format of
single variable read command message from the master is shown below.

In response the PTS returns either a message containing the variable value or an error m
indicating that the object does not exist. The same error message is also returned
requested Instance ID is outside the range 1 to 50. The format of the normal response m
is shown below.

The format of the error response is shown below.

Byte Contents

0 Message Header

1 R/R = 0, Service Code = 50

2 Class ID = 100

3 Instance ID (1 to 50, see above)

Table 5: Single Variable Read Input Message Format

Byte Contents

0 Message header

1 R/R = 1, Service code = 50

2 Variable value LS Byte

3 Variable value Byte 2

4 Variable value Byte 1

5 Variable value MS Byte

Table 6: Single Variable Read Output Message Format

Byte Contents

0 Message header

1 R/R = 1, Service code = 20

2 General error code = 22

3 Additional code (unspecified)

Table 7: Single Variable Read Error Response Format
Copyright © 1999 Quin Systems Limited Page 18

Issue 2 PTS/DeviceNet Interface User’s Manual

ance of
nce ID
t of

e format

0. The
4.5.2 Single Variable Write Message Format

The single variable write message is sent as an explicit message to the appropriate inst
the Variable class. The instance ID is the same as the variable number, so that the insta
for $V1 is 1, for $V10 is 10, etc. The service code used is WRITE_VAR (51). The forma
the single variable write command message from the master is shown below.

In response the PTS returns either a normal response message or an error message. Th
of the normal response message is shown below.

An error message is returned if the requested Instance ID is outside the range 1 to 5
format of the error response is shown below.

Byte Contents

0 Message Header

1 R/R = 0, Service Code = 51

2 Class ID = 100

3 Instance ID (1 to 50, see above)

4 Variable value LS Byte

5 Variable value Byte 2

6 Variable value Byte 1

7 Variable value MS Byte

Table 8: Single Variable Write Input Message Format

Byte Contents

0 Message header

1 R/R = 1, Service code = 51

Table 9: Single Variable Write Output Message Format

Byte Contents

0 Message header

1 R/R = 1, Service code = 20

2 General error code = 22

3 Additional code (unspecified)

Table 10: Single Variable Write Error Response Format
Copyright © 1999 Quin Systems Limited Page 19

Issue 2 PTS/DeviceNet Interface User’s Manual

bject.
e CAN
rotocol.
ce ID

cify
e the

ariable
umber
4.6 Block Variable Access

Accessing blocks of variables is done by sending messages to the Variable Assembly o
The read response and the write command messages are usually longer than a singl
message packet and are therefore fragmented using the acknowledged fragmentation p
The read and write command messages specify the block of variables by giving the instan
of the first variable followed by the number of variables in the block. It is an error to spe
either the first variable or the number of variables so that any of the instance IDs is outsid
range 1 to 50. This produces an error message indicating an invalid parameter.

4.6.1 Block Variable Read Message Format

The block variable read command message is sent as an explicit message to the V
Assembly. The command message specifies the instance ID of the first variable and the n
of variables to read. The format of the block variable read command is shown below.

Byte Contents

0 Message header

1 R/R = 0, Service code = 50

2 Class ID = 4

3 Instance ID = 3

4 First variable instance ID (1 to 50)

5 Number of variables

Table 11: Block Variable Read Input Message Format
Copyright © 1999 Quin Systems Limited Page 20

Issue 2 PTS/DeviceNet Interface User’s Manual

ormal
ormal

ge are
If the variable instance IDs are in range and all variables exist, the PTS returns the n
response message which contains the values of each variable.The format of the n
response message is shown belowbefore fragmentation.

The errors which may be returned by the PTS instead of the normal response messa
shown below.

Byte Contents

0 Message header

1 RR = 1, Service code = 50

2 Value of 1st variable LS Byte

3 Value of 1st variable Byte 2

4 Value of 1st variable Byte 1

5 Value of 1st variable MS Byte

6 Value of 2nd variable LS Byte

7 Value of 2nd variable Byte 2

8 Value of 2nd variable Byte 1

9 Value of 2nd variable MS Byte

... More variables

Table 12: Block Variable Read Output Message Format

Code Meaning

22 Object does not exist. One or more variables in the block is not
defined.

32 Invalid parameter. The block has been defined so that one or more
variable instance IDs is outside the range 1 to 50.

Table 13: Block Variable Read Error Codes
Copyright © 1999 Quin Systems Limited Page 21

Issue 2 PTS/DeviceNet Interface User’s Manual

riable
umber
f the

s shown
4.6.2 Block Variable Write Message Format

The block variable write command message is sent as an explicit message to the Va
Assembly. The command message specifies the instance ID of the first variable and the n
of variables to read followed by the values of each variable in the block. The format o
block variable write command is shown belowbefore fragmentation.

If the variable instance IDs are in range, the PTS returns the normal response message a
below.

Byte Contents

0 Message header

1 R/R = 0, Service code = 51

2 Class ID = 4

3 Instance ID = 3

4 First variable instance ID (1 to 50)

5 Number of variables

6 Value of 1st variable LS Byte

7 Value of 1st variable Byte 2

8 Value of 1st variable Byte 1

9 Value of 1st variable MS Byte

10 Value of 2nd variable LS Byte

11 Value of 2nd variable Byte 2

12 Value of 2nd variable Byte 1

13 Value of 2nd variable MS Byte

... More variables

Table 14: Block Variable Write Input Message Format

Byte Contents

0 Message header

1 RR = 1, Service code = 51

Table 15: Block Variable Write Output Message Format
Copyright © 1999 Quin Systems Limited Page 22

Issue 2 PTS/DeviceNet Interface User’s Manual

to 50.
An error message is returned if any of the variable instance IDs is outside the range 1
The format of the error response is shown below.

Byte Contents

0 Message header

1 R/R = 1, Service code = 20

2 General error code = 32

3 Additional code (unspecified)

Table 16: Block Variable Write Error Response Format
Copyright © 1999 Quin Systems Limited Page 23

Issue 2 PTS/DeviceNet Interface User’s Manual

ide
date

w.
5. Electronic Data Sheet

The information in an Electronic Data Sheet (EDS) allows configuration tools to prov
informative screens that guide a user through configuring a DeviceNet device. An up to
copy of the EDS is available from Quin Systems Ltd. The text of the EDS is shown belo

$ Quin Systems Ltd.
$ EDS for PTS/DeviceNet interface
$ Revision History
$ 1.1 23 Dec 98 Written by John Lambe
$ 1.2 02 Mar 99 Modified to include variable access in I/O
connection

[File]
 DescText = "PTS";
 CreateDate = 23-12-98;
 CreateTime = 11:50:00;
 ModDate = 02-03-99;
 ModTime = 14:00:00;
 Revision = 1.2;

[Device]
 VendCode = 455;
 VendName = "Quin Systems Ltd.";
 ProdType = 1;
 ProdTypeStr = "Control Station";
 ProdCode = 1;
 MajRev = 1;
 MinRev = 2;
 ProdName = "PTS";
 Catalog = "";

[IO_Info]
 Default = 0X0001;
 PollInfo = 0X0001, 1, 1;

$ Input Connection
 Input1 =
 14, $ 14 bytes produced
 0, $ All bits significant
 0x0001, $ Poll only
 "Input I/O & Variable", $ Name string
 6, $ Connection path size

"20 04 24 01 30 03", $ Assembly Class (4) I/O Instance (1)
 $ Data Attribute (3)
 "Input I/O & Variable"; $ Help string

$ Output Connection
Copyright © 1999 Quin Systems Limited Page 24

Issue 2 PTS/DeviceNet Interface User’s Manual
 Output1 =
 14, $ 14 bytes consumed
 0, $ All bits significant
 0x0001, $ Poll only
 "Output I/O & Variable", $ Name string
 6, $ Connection path size

"20 04 24 01 30 03", $ Assembly Class (4) I/O Instance (1)
 $ Data Attribute (3)
 "Output I/O & Variable"; $ Help string

[ParamClass]

[Params]

[EnumPar]

[Groups]
Copyright © 1999 Quin Systems Limited Page 25

Issue 2 PTS/DeviceNet Interface User’s Manual

Nbus
onet
eNet
n for

6 are
ard
6. Hardware Configuration

6.1 DeviceNet Interrupts

Before attempting to use the PTS/DeviceNet Interface you must ensure that the CA
interrupt jumper J11 is correctly configured. The link between pins 1 & 2 enables the Serv
port on the lower pair of connectors S6. The link between pins 11 & 12 enables the Devic
port on the upper pair of connectors S5. Figure 2 below shows the correct configuratio
jumper J11.The location of the jumper pad and the connectors is shown in figure 3.

Figure 2. CANbus Interrupt Jumper

6.2 DeviceNet Connections

The connections for the CANbus interface on the front panel 9 way plug and socket S
shown below. Note that these comply with the CAN in Automation (CiA) draft stand
DS102 Version 2.0, CAN Physical Layer for Industrial Applications.

Pin no. Signal Pin no. Signal

1 Reserved 6 GND

2 CAN_L 7 CAN_H

3 CAN_GN
D

8 ERROR

4 Reserved 9 CAN_V+
(7–13V)

5 CAN_SHL
D
(screen)

Table 17: DeviceNet Connections

2 : /IRQ5
4 : /IRQ4
6 : /IRQ3

J11

/CAN0 IRQ : 1
/CAN0 IRQ : 3
/CAN0 IRQ : 5

8 : /IRQ5/CAN1 IRQ : 7

/CAN1 IRQ : 9 10 : /IRQ4
/CAN1 IRQ : 11 12 : /IRQ3
Copyright © 1999 Quin Systems Limited Page 26

Issue 2 PTS/DeviceNet Interface User’s Manual
6.3 CPU360 Board Layout

Figure 3. Jumper and connector locations

CPU360 module - component side

S2

Top

Bottom

S1

P1

P2

J9

J5

J8

J4

J6
1

1

1

S5

S6

S4

S3

J2
1J1

1

J3
1

1

J7
1

P3

1

P4

1

J10
1

J11
1

Copyright © 1999 Quin Systems Limited Page 27

Issue 2 PTS/DeviceNet Interface User’s Manual

ber of

ot be

here
age.

been
sage

dged

tion
bus

value

itted
ssage

iving

ACK
A Statistics Display

The example below shows a typical statistics display produced by the shell commandstat.

dns> stat
1 Version 1.1
2 Packets Received 2 Transmitted 5 Errors 1
3 Last error was Acknowledgement error
4 Fragment msgs OK 0 NAKS 0 retries 0 timeouts 0
5 States Estab Estab Closed
6 EPRs 0 1000 0

Line 1 shows the DeviceNet software version, in this case 1.1.

Line 2 shows the number of DeviceNet packets received and transmitted and the num
errors detected since start-up.

Line 3 shows the last error detected. Once the error condition has cleared this line will n
displayed. The error is one of the standard CANbus error conditions as follows:

• Stuff error - More than 5 equal bits have occurred in part of a received message w
this is not allowed. Stuff bits help synchronization by adding transitions to the mess
A stuff bit is inserted in the bit stream after 5 consecutive equal value bits have
transmitted; the stuff bit being the opposite polarity to the 5 preceding bits.All mes
fields are stuffed except the CRC, the ACK field and the End of Frame.

• Format error - The fixed format part of a received frame has the wrong format.

• Acknowledgement error - The message transmitted by the PTS was not acknowle
by another node.

• Bit 1/0 error - During transmission of a message (with the exception of the arbitra
field) the PTS wanted to send a recessive bit (logic level 1) but the monitored CAN
value was dominant or vice versa.

• CRC error - The CRC received for an incoming message does not match the
calculated by the PTS for the received data.

Line 4 shows the statistics for fragmented messages as follows:

• msgs OK - The number of complete fragmented messages successfully transm
since start-up. A fragmented message will generally consist of more than 1 me
packet.

• NAKS - The number of messages which were NAKed. This means that the rece
node ran out of buffer space for the message.

• retries - The number of transmitted fragments which had to be retried because an
was not received within the timeout period.
Copyright © 1999 Quin Systems Limited Page 28

Issue 2 PTS/DeviceNet Interface User’s Manual

o be
eout

eout
sage

sage
is not

tion
Master

ssage
to this

not

e first
cond
hed
• timeouts - The number of fragmented message transmissions which had t
abandoned because an ACK to a retried fragment was not received within the tim
period. If an ACK to a transmitted message fragment is not received within the tim
period, the fragment is retried once. If the retry also times out, the whole mes
transmission is abandoned.

Line 5 shows the states of the connections. The first column is the Explicit Mes
connection, the second column is the Polled I/O connection and the third connection
currently used. Possible states are as follows:

• Closed - The connection does not exist.

• Config - An I/O connection is in the configuring state. This means that the connec
has been opened but the expected packet rate (EPR) has not yet been set by the
node.

• Estab - The connection is established for passing messages. The Explicit Me
connection changes to this state once it is opened. The I/O connection changes
state only after it has been opened and the EPR has been set.

• Tmo - The connection has timed out. An I/O connection will time out if a packet is
received within the time specified by the EPR.

Line 6 shows the expected packet rates (EPR) for the connections in milliseconds. Th
column is the EPR for the Explicit Message connection - normally set to zero. The se
column is the EPR for the Polled I/O connection - always positive for an establis
connection. The third connection is not currently used.
Copyright © 1999 Quin Systems Limited Page 29

Issue 2 PTS/DeviceNet Interface User’s Manual

shell

conds

was

two
o and

eld is
CPU

ier.

DLC)
is 1
only
B Logged Message Format

The following example shows a typical logged message display produced by the
commanddisp:

dns> disp 1
2544.187 TX C0:A5 C1:65 A0:99 A1:60 CF:48 02 94 0B 02

The fields of the message represented as hexadecimal bytes are as follows:

• Timestamp - The time the message was sent or received in seconds and millise
since start-up.

• TX/RX - TX means the message was transmitted by the PTS, RX means it
received.

• C0 - The Control 0 register in the message object structure. Each field in the
Control registers is represented by 2 bits which are read as 01 when the field is zer
10 when the field is set. The fields in this register are as follows:

• C1 - The Control 1 register in the message object structure. The Message Lost fi
only valid for a received message. For a transmitted message the field becomes
Updating. The fields in this register are as follows:

• A0/A1 - A0 and the top 3 bits of A1 combine to form the 11 bit CAN message identif

• CF - The message configuration register. This contains the data length code (
which is the number of data bytes in the message, the direction code (Dir) which
for transmit and the extended code (Xtd) which is always zero as DeviceNet uses
standard 11-bit identifiers.

• Data - Up to eight bytes of data in hexadecimal format.

7 6 5 4 3 2 1 0

Message
Valid

Transmit
Interrupt
Enable

Receive
Interrupt
Enable

Interrupt
Pending

Table 18:

 7 6 5 4 3 2 1 0

Remote
Frame

Pending

Transmit
Request

Message
Lost

New Data

Table 19:
Copyright © 1999 Quin Systems Limited Page 30

Issue 2 PTS/DeviceNet Interface User’s Manual
Index

= variable assignment 11

A

acknowledge error 28
assembly

I/O 13
variable 13

assembly class 13

B

baud rate 6

bit 1/0 error 28
block variable

write 20, 22

C

CANbus interrupt 26

class 12
assembly 13
connection 13
devicenet 13
identity 13
message router 13
variable 13

class diagram 14

class ID 14

classes 13

component 12

configuration shell 5
configuring

hardware 26
PTS 4

connection
state 29

connection class 13

CPU360 board layout 27

CRC error 28

D

database 11

default variables 7

device profile 12

devicenet class 13

devicenet connections 26

disp command 30

displaying messages 9

DQ command 5

E

EDS 24
error

acknowledge 28
bit 1/0 28
CRC 28
format 28
stuff 28

error messages
undefined variable 11

F

format error 28

fragmentation 28

fragmented messages 28

H

hardware configuration 26

help command 5

host I/O 10

I

I/O input message 16

I/O output message 17
ID

class 14
instance 14

identity class 13
index

variable 6
input line definitions 10
instance

variable 6
instance ID 14

interrupt jumper 4, 26

introduction 3

J

J11 26
jumper

interrupt 4, 26
Copyright © 1999 Quin Systems Limited Page 31

Issue 2 PTS/DeviceNet Interface User’s Manual
L

LI 10

license key 4
disable 4
enable 4

list
input line definitions 10

list variables 7

logged message format 30

logging messages 8

M

MAC ID 6

map variables 7
mapping

variable 6
message

block variable write 20, 22
I/O input 16
I/O output 17
single variable read 18
single variable write 19

message router class 13

O

object model 12, 13

P

programming
PTS 10

S

shell 5
accessing 5
baud 6
default 7
disp 9, 30
help 5
list 7
log 8
macid 6
map 7
stat 8, 28

unmap 7
wa 8
woc 8

single variable
read 18
write 19

SK command 4

software license key 4

software versions 3

stat command 28

statistics 8

statistics display 28

stuff error 28

T

trigger variable 11

U

undefined variable 11

unmap variable 7

V

variable
default 7
index 6
instance 6
list 7
map 7
mapping 6
unmap 7
write always 7
write behaviour 7

variable class 13
variables

as parameters 11
assignment 11
query command 11
trigger 11

W

write always 7

write on change 7
Copyright © 1999 Quin Systems Limited Page 32

	Contents
	1. Introduction
	1.1 General

	2. Configuring the PTS for DeviceNet
	2.1 Hardware
	2.2 Software License Key
	2.3 Configuration Shell
	2.3.1 Accessing the Shell
	2.3.2 Changing the Baud Rate
	2.3.3 Changing the MAC ID
	2.3.4 Mapping Variables
	2.3.5 Variable Write Behaviour
	2.3.6 Displaying Statistics
	2.3.7 Logging Messages

	3. Programming the PTS
	3.1 Host I/O
	3.2 Variables

	4. PTS Device Profile
	4.1 Overview
	4.2 Device Description
	4.3 Object Model
	4.3.1 Classes
	4.3.2 Model Description

	4.4 I/O Access
	4.4.1 I/O Input Message Format
	4.4.2 I/O Output Message Format

	4.5 Single Variable Access
	4.5.1 Single Variable Read Message Format
	4.5.2 Single Variable Write Message Format

	4.6 Block Variable Access
	4.6.1 Block Variable Read Message Format
	4.6.2 Block Variable Write Message Format

	5. Electronic Data Sheet
	6. Hardware Configuration
	6.1 DeviceNet Interrupts
	6.2 DeviceNet Connections
	6.3 CPU360 Board Layout

	Index

