PTS/DeviceNet Interface Software
User’'s Manual

Issue 2
March 1999

(MAN538)

Issue 2

PTS/DeviceNet Interface User's Manual

Contents

1. Introduction

11

General

2. Configuring the PTS for DeviceNet

2.1
2.2
2.3

2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7

Hardware
Software License Key
Configuration Shell

Accessing the Shell
Changing the Baud Rate
Changing the MAC ID
Mapping Variables
Variable Write Behaviour
Displaying Statistics
Logging Messages

3. Programming the PTS

3.1
3.2

Host I/0
Variables

4. PTS Device Profile

4.1
4.2
4.3

43.1
4.3.2
4.4

4.4.1
4.4.2
4.5

45.1
4.5.2
4.6

4.6.1
4.6.2

Overview
Device Description
Object Model
Classes
Model Description
I/O Access
I/O Input Message Format
I/O Output Message Format
Single Variable Access
Single Variable Read Message Format
Single Variable Write Message Format
Block Variable Access
Block Variable Read Message Format
Block Variable Write Message Format

5. Electronic Data Sheet

Hardware Configuration

6.1
6.2
6.3

DeviceNet Interrupts
DeviceNet Connections
CPU360 Board Layout

A Statistics Display

B Logged Message Format

Copyright © 1999 Quin Systems Limited

GNE

10

10
11

12

12
13
13

13
13
16
16
17
18
18
19
20
20
22

24

26

26
26
27

28
30

Page 2

Issue 2 PTS/DeviceNet Interface User's Manual

1. Introduction

1.1 General
This manual relates to the following versions of software in the PTS unit:

DeviceNet Interface Version 1.2
PTS Host software Version 1.9.2 or later

This document describes the PTS/DeviceNet interface implemented on the second CANbus
interface of the CPU360 (PTS Mk2 or Machine Controller).

DeviceNet is a low level network based on CANbus which is designed to connect industrial
devices (such as limit switches, photoelectric sensors, etc.) to a PLC or PC. The PTS DeviceNet
implementation allows the PTS to be connected to DeviceNet and appear as a slave device
using the Predefined Master/Slave Connection Set of connections. The Predefined Set contains
one connection for explicit messages to allow read/write of parameters, variables, etc., and
several different I/O connections to allow read/write of discrete 1/O bits. Currently the only I/

O connection type implemented is a polled connection.

The remote PLC/PC can access a fixed set of PTS variables via the explicit message connection
and host level I/O via the 1/0 connection. The host level I/O provides 8 groups of virtual /O
bits which can be used for DI lines, SO, CO, RI, RO, etc.

Copyright © 1999 Quin Systems Limited Page 3

Issue 2 PTS/DeviceNet Interface User’'s Manual
2. Configuring the PTS for DeviceNet

2.1 Hardware

Before switching the PTS on check that the DeviceNet interrupt link is installed between pins
11 & 12 of jumper J11 as described in section 4.1, DeviceNet Interrupts. Without this jumper
link the DeviceNet software will not work.

2.2 Software License Key

The software for the DeviceNet interface will not operate unless a software key has been
entered to enable this option. The software key is different for each PTS and can be obtained
from your sales office given the system serial number which can be found by using the SK

command as shown below.

To enable the software the following command should be entered on Port A (the main
programming port) in privileged mode. You enter the texboid while the PTS displays
something similar to the rest.

1> SK

Serial number: 006545
Feature Version Key
New feature ? devicenet
Version ? 1.1

Key ? abcd

OK

Note that the feature name (devicenet) must be entered in lower case exactly as shown above.
Note also that it is necessary to turn the power off and back on again to run the Devicenet
software.

If the software needs to be disabled, first make a note of the software key in case it is needed
in the future. Then proceed as above but simply press the Return key in response to the
“Version ?” prompt as follows.

1> SK

Serial number: 006545
Feature Version Key
devicenet 1.1 ABCD
New feature ? devicenet
Version ?

Feature devicenet removed

Copyright © 1999 Quin Systems Limited Page 4

Issue 2 PTS/DeviceNet Interface User's Manual

2.3 Configuration Shell
2.3.1 Accessing the Shell

The DeviceNet configuration shell is a command interface specific to DeviceNet which allows
you to configure the MAC ID and baud rate for DeviceNet as well as displaying the
communications status and logging DeviceNet message packets for diagnostic purposes.

To enter the shell type the DQ command at Port A (the main programming port) in privileged
mode:

1> DQ
dns>

The dns> prompt shows that the configuration shell is ready for a new command. Typing help
makes the shell display a list of available commands as follows:

dns> help

baud <baudrate> Set DeviceNet baud rate

default Map default variables

disp <num> Display <num> logged messages

list List variable mapping

log <num> Set message log to <num> messages
macid <id> Set DeviceNet MAC Id

map <var> <idx> Map variable (at index)

quit Quit from this shell

stats Display DeviceNet statistics
unmap <var> Unmap variable

wa <var> Set variable to write always
woc <var> Set variable to write on change
help Display this list

If DeviceNet is not enabled an error message is displayed instead:
1> DQ
DeviceNet is not enabled
1>

In this case you need to enter a software license key as described in the section Software
License Key and cycle the power to the PTS to start the DeviceNet software.

Copyright © 1999 Quin Systems Limited Page 5

Issue 2 PTS/DeviceNet Interface User's Manual

2.3.2 Changing the Baud Rate

The DeviceNet baud rate can be set usingatiedcommand. The baud rate can be set to 125,
250 or 500 kB. The following example shows how to change the baud rate from 125 to 500 kB.

dns> baud
Baud rate 125k

dns> baud 500
OK

Entering the baud command without a value displays the current setting. Entering the
command with a value causes the setting to be changed. The shell displays OK when the new
value has been validated, communications have been restarted at the new rate and the new
setting has been saved to non-volatile memory. If the shell does not display OK then it is likely
that the new baud rate is not correct or the PTS is not connected to DeviceNet.

2.3.3 Changing the MAC ID

The MAC ID is the address of a unit on the DeviceNet. Each unit on the network must have a
unique MAC ID between 1 and 63. The MAC ID of the PTS can be changed usingdbiel
command. The following example shows how to change the MAC ID from 25 to 30.

dns> macid
MAC Id 25

dns> macid 30
OK

Entering the macid command without a value displays the current setting. Entering the
command with a value causes the setting to be changed. The shell displays OK when the new
value has been validated, communications have been restarted with the new MACID and the
new setting has been saved to non-volatile memory. If the shell does not display OK then it is
likely that another unit with the same MAC ID is already on DeviceNet and the duplicate MAC

ID check has failed.

2.34 Mapping Variables

You can access up to 50 PTS variables over DeviceNet. By default these variables are $V1 up
to $V50 and are accessed from DeviceNet by their index or instance number. In the default case
variable $V1 is instance number 1 and so on up to variable $V50 which is instance number 50.
The instance number and name of all the available variables can be displayed list the
command as shown in the following example.

Copyright © 1999 Quin Systems Limited Page 6

Issue 2 PTS/DeviceNet Interface User's Manual

dns> list
Index Var WOC
1 V1 ON

2 V2 ON

3 V3 ON

4 V4 ON

5 V5 ON

Thedefaultcommand can be used to reset the PTS to use the default variables.
dns> default

If the default set of variables is not what you want it is possible to change which variable is
mapped at any index or instance number. For example to map variable $SPD to variable
instance number 10 use timapcommand as shown below.

dns> map spd 10
dns> list
Index Var WOC

10 SPD ON

In this case accessing variable instance number 10 from DeviceNet actually accesses the PTS
variable $SPD. If there is already a variable mapped at instance number 10, the old variable is
removed and the new variable replaces it. If the second parameter, the instance number, is
omitted from themapcommand the variable is mapped at the first free instance number.

It is also possible to remove a mapped variable usingrtmapcommand as shown below.
dns> unmap spd

This removes variable $SPD. Assuming $SPD was mapped at instance numbenutinépe
command leaves instance number 10 without an attached variable. Any writes to instance
number 10 will be ignored and any reads will return zero.

2.35 Variable Write Behaviour

When a particular variable is written to from DeviceNet it is often not desirable to write to the
mapped PTS variable unless the value has changed. This is because the variable may be a
trigger variable and every write by the DeviceNet scanner would cause the trigger variable’s
command string to be executed. At high scan rates this would put an unnecessary load on the
PTS which could slow down more important operations. Because of this variables are set by
default to "write on change”, in other words the variable is only written to when the value sent

by the scanner has changed. This is indicated in the output frotstrdmmand when the

WOC column is set to ON. The alternative is to set the variable to "write always", in other
words the variable is always written to when a value is sent by the scanner. In this case the
WOC column is set to OFF.

Copyright © 1999 Quin Systems Limited Page 7

Issue 2 PTS/DeviceNet Interface User's Manual

The woc command is used to set variables to "write on change" as shown in the following
example.

dns> woc spd

This sets variable $SPD to "write on change". If the variable is omitted fromvdlteommand
then all current variables and any mapped subsequently are set to "write on changea The
command is used to set variables to "write always" as shown below.

dns> wa
Set WOC flag on ALL variables ? (Y/N) y
OK

This command sets all current variables and any mapped subsequently to "write always".
2.3.6 Displaying Statistics

The statcommand allows you to view some statistics of the DeviceNet performance and the
state of the connections. The following example shows a typical display:

dns> stat

Version 1.1

Packets Received 2 Transmitted 5 Errors 1
Fragment msgs OK 0 NAKS O retries O timeouts O
States Estab Closed Closed

EPRs O 0 O

The display shows the software version followed by total counts of the number of DeviceNet
message packets received and transmitted and a count of the number of errors. You can use
these numbers to find out how well the DeviceNet link is performing. A full description of the
statistics display is given in Appendix 1.

2.3.7 Logging Messages

For advanced diagnostic work you can log DeviceNet messages to a message buffer in
memory. The size of the buffer is limited but it is designed to always hold the iasissages
wheren is specified by théog command. The following example shows the message buffer
being set to hold the last 100 messages:

dns> log
Buffer size O

dns> log 100

Copyright © 1999 Quin Systems Limited Page 8

Issue 2 PTS/DeviceNet Interface User's Manual

The messages can be displayed at any time by usirdgjgpbeommand. The following example
shows the disp command being used to display the last 10 messages:

dns> disp 10

2544.187 RX C0:9A C1:5A A0:99 A1:C0O CF:50 024C 0301
01

2544.187 TX C0:A5 C1:65 A0:99 A1:60 CF:48 02 94 0B 02
2551.843 RX C0:9A C1:5A A0:99 A1:C0O CF:60 42 4B 0301
0102

2551.843 TX C0O:A5 C1:65 A0:99 A1:60 CF:38 42 CB 00
2551.902 RX C0:9A C1:5A A0:99 A1:80 CF:70 02 10 0501
09 00 00

2551.902 TX C0:A5 C1:65 A0:99 A1:60 CF:48 02 90 00 00

In this example only six messages are displayed because only six have arrived since the
message buffer was set up. A full description of the message display is given in Appendix 2.

Copyright © 1999 Quin Systems Limited Page 9

Issue 2 PTS/DeviceNet Interface User’'s Manual
3. Programming the PTS

3.1 Host I/O

The PTS host I/O bits map onto the DeviceNet discrete I/O bits such that when the master node
writes to an output bit the result appears in the corresponding PTS host input bit. Similarly
when the master node reads an input bit it gets the contents of the corresponding PTS host
output bit. The PTS currently supports 8 host input groups (10 - 17) and 8 host output groups
(10 - 17). Note that the host I/O is system wide and is not channel or node specific like the
standard 1/0O.

The host inputs are supported by a subset of the normal input commands as follows:

Blg:[n] Inhibit function input.

DIg:n /... Define function input (restricted).

. Elg:[n] Enable function input.

. llg:n If input true do command line.
. LIg List input line definitions.

. Mlg:[n] Mask function input.

. RIg:[n] Read input line(s) in group g.

The host outputs are similarly supported by a subset of the normal output commands as
follows:

. COg:[n] Clear output line n in group g.

. IOg:n If output true do command line.

. LOg List output line definitions.

. ROg:[n] Read output line state(s) in group g.

SOg:[n] Set output line n in group g.

The following example shows host input line 10:5 being defined as a function input to execute
sequence 200. When the DeviceNet master sets output number 5 then the corresponding host
input is set and the function input is triggered to execute sequence 200.

DI10:5+/XS200

Copyright © 1999 Quin Systems Limited Page 10

Issue 2 PTS/DeviceNet Interface User's Manual

3.2 Variables

The DeviceNet interface supports access to a number of predefined PTS variables ($V1 to
$V50) which are accessed using the Explicit message mechanism. The DeviceNet master is
able to access variables individually or to access a block of variables by specifying the start

point and number of variables to be read/written.

The variable database is a centralized facility which is accessible to all tasks in the system and
holds a set of integer variables. Because variables are generally accessible, it is possible for the
user to change a variable via DeviceNet and for the variable to be used subsequently to set a
motor parameter in the PTS. Similarly a variable can be set to some motor parameter, such as
the position, which can then be read over DeviceNet. A variable can also be set up to trigger
execution of a command string on the PTS.

In the PTS/DeviceNet interface variables $V1 to $V50 are used with $V1 being accessed as
instance #1 of the Variable class up to $V50 which is accessed as instance #50 of the class.

A variable can be set to a constant value using ‘=" (equals). For example the following
command sets the variable $SPD to a value of 5000.

1> $SPD=5000

A variable can be used in place of a numeric parameter in most commands. For example the
following command sets the velocity to the value of the variable $SPD which is currently 5000.

If the variable has not been assigned a value, then the “undefined variable” error message is
displayed.

1> SV$SPD

Conversely it is possible to query a parameter and place the result in a variable. The following
example updates variable $SPD with the current velocity value.

1> $SPD=SV

A variable can be defined as a trigger variable so that when it is updated a string of commands
is executed. The following example defines $SPD as a trigger variable which causes the
velocity to be set to the value of $SPD each time the variable is updated.

1> $SPD>CH1/SV$SPD

Copyright © 1999 Quin Systems Limited Page 11

Issue 2 PTS/DeviceNet Interface User's Manual

4. PTS Device Profile

4.1 Overview

DeviceNet units are described by a device profile which is a formal definition of the device
behaviour, 1/0 data and configuration data. The device profile consists of the object model (see
below), the I/O data format, the configuration data and the interface to that data.

The Object model specifies:

. The components that make up the unit

. The externally visible behaviour of the unit

. How the components fit together to provide the required behaviour
. The information which can be sent to or read from the components

The components mentioned above are represented by Objects in the Object model. Objects
which are of the same type are said to belong to the same Class. This means that all the objects
in a given class hold the same type of information, provide the same services and implement
the same behaviour. From a practical point of view, if you know what attributes an object has
and what services it provides, you can use DeviceNet messages to read or write the attributes
or invoke the services.

The rest of this chapter is the formal device profile for the PTS.

Copyright © 1999 Quin Systems Limited Page 12

Issue 2

4.2

PTS/DeviceNet Interface User's Manual

Device Description

The PTS controls the position and velocity of one or more electric motors. In typical PTS
applications the position/velocity profiles are either pre-defined or can be calculated at run time
so there is no need to control these via DeviceNet. Instead the DeviceNet interface to the PTS
operates at a higher level providing access to a set of virtual 1/O lines and a set of general
purpose variables. The I/O lines can be used for control and signalling while the variables can
be used to set operational parameters (such a speed, length of cut) and to return status

information.

The PTS is a Group 2 only slave device without UCMM and supports the Poll I/O and Explicit
connections from the Predefined Master/Slave Connection Set.

4.3
4.3.1

Classes

Object Model

The table below shows the classes which are supported by the PTS along with the number of
objects within each class and a description.

ria-
aria-

us of

PTS.

nd

varia-

>mbly.

Number of .
Class Objects Description

Assembly 2 The 1/0 assembly provides access to the Host I/O and va
bles. The Variable assembly provides access to blocks of \
bles.

Connection | 2 The PTS implements the Poll I/O and Explicit connection
from the Predefined Master/Slave Connection Set.

DeviceNet 1 The DeviceNet object provides the configuration and stat
the physical connection to DeviceNet.

Identity 1 Provides identification and general information about the

Message 1 Provides a message connection point for all the objects ali

Router classes in the PTS.

Variable 0to 50 Each variable object provides read/write access to a PTS
ble. Blocks of variables can be accessed via the variable
assembly. Variables can also be accessed via the 1/0 assg¢

Table 1: DeviceNet Classes
4.3.2 Model Description

The 1/0O Assembly object provides access to the Host I/0O and the variables in the PTS via the
Poll I/0 connection. The Variable objects provide access to the PTS variables via the Explicit
message connection and the Message Router. The Variable Assembly object provides access

to blocks of PTS variables.

Copyright © 1999 Quin Systems Limited

Page 13

Issue 2 PTS/DeviceNet Interface User's Manual

The diagram below shows the objects and classes within the PTS/DeviceNet Interface and the
connections between them.

Variable Class

Variable
#1

Identity Class

Variable
Assy

Message Router

Assembly Class

DeviceNet Class

Polled
110

Explicit
Message

Connection Class

DeviceNet

Figure 1. PTS/DeviceNet Interface Object Model

The table below shows the DeviceNet objects along with their class and instance IDs.

Object Class ID Instance ID
DeviceNet 03hex 1
Identity 01hex 1
Explicit Connection 05hex 1
I/O Connection 05hex 2

Table 2: PTS Object IDs

Copyright © 1999 Quin Systems Limited Page 14

Issue 2

PTS/DeviceNet Interface User's Manual

Object Class ID Instance ID
Message Router 02hex 1
I/O Assembly 04hex 1
Variable Assembly 04hex 3
Variable 64hex 1to 50

Table 2: PTS Object IDs

Copyright © 1999 Quin Systems Limited

Page 15

Issue 2 PTS/DeviceNet Interface User's Manual

4.4 /O Access

4.4.1 I/O Input Message Format

The 1/0 input command message consists of 8 data bytes which map directly on to the Host I/
O virtual input lines. When a bit is set in the command message the corresponding input line is
set and vice versa. The message also contains 6 bytes which specify the index or instance
number of a variable to be read and the index and value of a variable to be written. The
following table shows the correspondence between the bits in the message and the Host input
lines and the variables.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
0 10:8 10:7 10:6 10:5 10:4 10:3 10:2 10:1
1 11:8 11:7 11:6 11:5 11:4 11:3 11:2 11:1
2 12:8 12:7 12:6 12:5 12:4 12:3 12:2 12:1
3 13:8 13:7 13:6 13:5 13:4 13:3 13:2 13:1
4 14:8 14:7 14:6 14:5 14:4 14:3 14:2 14:1
5 15:8 15:7 15:6 155 15:4 15:3 15:2 15:1
6 16:8 16:7 16:6 16:5 16:4 16:3 16:2 16:1
7 17:8 17:7 17:6 17:5 17:4 17:3 17:2 17:1
8 Output variable index (1 to 50)
9 Input variable index (1 to 50)
10 Input variable value least significant byte
11 Input variable value byte 2
12 Input variable value byte 3
13 Input variable value most significant byte

Table 3: I/O Input Message Format

The input variable index specifies the index of a PTS variable to be written and the input
variable value bytes specify the value to be written to it. If the index is zero or out of range no
variable is written. The output variable index specifies the index of a PTS variable which is to
be read and returned in the 1/O output response message. If the index is zero or out of range or
does not correspond to a valid variable no variable is read.

The mapping between the variable index and the variable name is described in chapter 2,
Configuring the PTS for DeviceNet.

Copyright © 1999 Quin Systems Limited Page 16

Issue 2 PTS/DeviceNet Interface User's Manual

4.4.2 I/O Output Message Format

The 1/0O output response message consists of 8 data bytes which map directly on to the Host I/
O virtual output lines. When an output line is set the corresponding bit in the response message
is set and vice versa. The message also contains 6 bytes which hold the index and value of a
PTS variable being read by the scanner. The following table shows the correspondence
between the bits in the message and the Host output lines and the variable.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit O
0 10:8 10:7 10:6 10:5 10:4 10:3 10:2 10:1
1 11:8 11:7 11:6 11:5 11:4 11:3 11:2 11:1
2 12:8 12:7 12:6 12:5 12:4 12:3 12:2 12:1
3 13:8 13:7 13:6 13:5 13:4 13:3 13:2 13:1
4 14:8 14:7 14:6 14:5 14:4 14:3 14:2 14:1
5 15:8 15:7 15:6 155 15:4 15:3 15:2 15:1
6 16:8 16:7 16:6 16:5 16:4 16:3 16:2 16:1
7 17:8 17:7 17:6 17:5 17:4 17:3 17:2 17:1
8 Not used
9 Output variable index (1 to 50)
10 Output variable value least significant byte
11 Output variable value byte 2
12 Output variable value byte 3
13 Output variable value most significant byte

Table 4: I/O Output Message Format

The output variable index corresponds to the output variable index specified in the input
command message and indicates which PTS variable is being read. The output variable value
bytes give the value of the variable being returned to the scanner. If the output variable index

in the output response message is zero then the variable has not been read and the value bytes
are not valid. This can occur is no variable was requested (index was zero), the output variable
index was out of range, or the requested variable did not exist.

Copyright © 1999 Quin Systems Limited Page 17

Issue 2 PTS/DeviceNet Interface User's Manual

4.5 Single Variable Access

45.1 Single Variable Read Message Format

The single variable read message is sent as an explicit message to the appropriate instance of
the Variable class. The instance ID is the same as the variable number, so that the instance ID
for$V1is 1, for $V10is 10, etc. The service code used is READ_VAR (50). The format of the
single variable read command message from the master is shown below.

Byte Contents

0 Message Header

1 R/R =0, Service Code =50
2 Class ID =100
3

Instance ID (1 to 50, see above)

Table 5: Single Variable Read Input Message Format

In response the PTS returns either a message containing the variable value or an error message
indicating that the object does not exist. The same error message is also returned if the
requested Instance ID is outside the range 1 to 50. The format of the normal response message
is shown below.

Byte Contents

Message header
R/R =1, Service code =50

Variable value LS Byte

Variable value Byte 2

Variable value Byte 1

a| bW DN|F]|] O

Variable value MS Byte

Table 6: Single Variable Read Output Message Format

The format of the error response is shown below.

Byte Contents

Message header
R/R =1, Service code = 20

0
1
2 General error code = 22
3

Additional code (unspecified)

Table 7: Single Variable Read Error Response Format

Copyright © 1999 Quin Systems Limited Page 18

Issue 2 PTS/DeviceNet Interface User's Manual

45.2 Single Variable Write Message Format

The single variable write message is sent as an explicit message to the appropriate instance of
the Variable class. The instance ID is the same as the variable number, so that the instance ID
for $V1is 1, for $V10 is 10, etc. The service code used is WRITE_VAR (51). The format of
the single variable write command message from the master is shown below.

Byte Contents

Message Header
R/R =0, Service Code =51
Class ID =100

Instance ID (1 to 50, see above)

Variable value LS Byte

Variable value Byte 2

Variable value Byte 1

N o|lo| b~ W|DN|EFL]O

Variable value MS Byte

Table 8: Single Variable Write Input Message Format

In response the PTS returns either a normal response message or an error message. The format
of the normal response message is shown below.

Byte Contents
0 Message header
1 R/R =1, Service code =51

Table 9: Single Variable Write Output Message Format

An error message is returned if the requested Instance ID is outside the range 1 to 50. The
format of the error response is shown below.

Byte Contents
0 Message header
1 R/R =1, Service code = 20
2 General error code = 22
3 Additional code (unspecified)

Table 10: Single Variable Write Error Response Format

Copyright © 1999 Quin Systems Limited Page 19

Issue 2 PTS/DeviceNet Interface User's Manual

4.6 Block Variable Access

Accessing blocks of variables is done by sending messages to the Variable Assembly object.
The read response and the write command messages are usually longer than a single CAN
message packet and are therefore fragmented using the acknowledged fragmentation protocol.
The read and write command messages specify the block of variables by giving the instance 1D
of the first variable followed by the number of variables in the block. It is an error to specify
either the first variable or the number of variables so that any of the instance IDs is outside the
range 1 to 50. This produces an error message indicating an invalid parameter.

4.6.1 Block Variable Read Message Format

The block variable read command message is sent as an explicit message to the Variable
Assembly. The command message specifies the instance ID of the first variable and the number
of variables to read. The format of the block variable read command is shown below.

Byte Contents

Message header
R/R =0, Service code = 50
ClassID=4

Instance ID = 3

First variable instance ID (1 to 50)

a|l bW N|F,]| O

Number of variables

Table 11: Block Variable Read Input Message Format

Copyright © 1999 Quin Systems Limited Page 20

Issue 2 PTS/DeviceNet Interface User's Manual

If the variable instance IDs are in range and all variables exist, the PTS returns the normal
response message which contains the values of each variable.The format of the normal
response message is shown bet&fiore fragmentation.

Byte Contents

Message header
RR =1, Service code =50

Value of 1st variable LS Byte

Value of 1st variable Byte 2

Value of 1st variable Byte 1

Value of 1st variable MS Byte

Value of 2nd variable LS Byte

Value of 2nd variable Byte 2

Value of 2nd variable Byte 1

Ol N B[W|DN|FL]| O

Value of 2nd variable MS Byte

More variables

Table 12: Block Variable Read Output Message Format

The errors which may be returned by the PTS instead of the normal response message are
shown below.

Code Meaning
22 Object does not exist. One or more variables in the block is not
defined.
32 Invalid parameter. The block has been defined so that one or more
variable instance IDs is outside the range 1 to 50.

Table 13: Block Variable Read Error Codes

Copyright © 1999 Quin Systems Limited Page 21

Issue 2 PTS/DeviceNet Interface User's Manual

4.6.2 Block Variable Write Message Format

The block variable write command message is sent as an explicit message to the Variable
Assembly. The command message specifies the instance ID of the first variable and the number
of variables to read followed by the values of each variable in the block. The format of the
block variable write command is shown belbefore fragmentation.

Byte Contents

Message header
R/R = 0, Service code =51
ClassID =4

Instance ID = 3

First variable instance ID (1 to 50)

Number of variables

Value of 1st variable LS Byte

Value of 1st variable Byte 2

Value of 1st variable Byte 1

Ol N | B~ W[DN|PFL]|O

Value of 1st variable MS Byte

[EY
o

Value of 2nd variable LS Byte

|_\
|

Value of 2nd variable Byte 2

[EEN
N

Value of 2nd variable Byte 1

[EY
w

Value of 2nd variable MS Byte

More variables

Table 14: Block Variable Write Input Message Format

If the variable instance IDs are in range, the PTS returns the normal response message as shown
below.

Byte Contents
0 Message header
1 RR =1, Service code =51

Table 15: Block Variable Write Output Message Format

Copyright © 1999 Quin Systems Limited Page 22

Issue 2 PTS/DeviceNet Interface User's Manual

An error message is returned if any of the variable instance IDs is outside the range 1 to 50.
The format of the error response is shown below.

Byte Contents
0 Message header
1 R/R =1, Service code = 20
2 General error code = 32
3 Additional code (unspecified)

Table 16: Block Variable Write Error Response Format

Copyright © 1999 Quin Systems Limited Page 23

Issue 2 PTS/DeviceNet Interface User's Manual
5. Electronic Data Sheet

The information in an Electronic Data Sheet (EDS) allows configuration tools to provide
informative screens that guide a user through configuring a DeviceNet device. An up to date
copy of the EDS is available from Quin Systems Ltd. The text of the EDS is shown below.

$ Quin Systems Ltd.

$ EDS for PTS/DeviceNet interface

$ Revision History

$ 1.1 23 Dec 98 Written by John Lambe

$ 1.2 02 Mar 99 Modified to include variable access in /O
connection

[File]
DescText = "PTS";
CreateDate = 23-12-98;
CreateTime = 11:50:00;
ModDate = 02-03-99;
ModTime = 14:00:00;
Revision = 1.2;

[Device]
VendCode = 455;
VendName = "Quin Systems Ltd.";
ProdType = 1;
ProdTypeStr = "Control Station";
ProdCode = 1,
MajRev = 1,
MinRev = 2;
ProdName = "PTS",
Catalog ="

[10_Info]
Default = 0X0001;
Pollinfo = 0X0001, 1, 1;

$ Input Connection

Inputl =
14, $ 14 bytes produced
0, $ All bits significant
0x0001, $ Poll only
“Input I/O & Variable", $ Name string
6, $ Connection path size
"20 04 24 01 30 03", $ Assembly Class (4) I/0O Instance (1)

$ Data Attribute (3)
“Input I/0O & Variable"; $ Help string

$ Output Connection

Copyright © 1999 Quin Systems Limited Page 24

Issue 2 PTS/DeviceNet Interface User's Manual

Outputl =
14, $ 14 bytes consumed
0, $ All bits significant
0x0001, $ Poll only
"Output I/0 & Variable", $ Name string
6, $ Connection path size
"20 04 24 01 30 03", $ Assembly Class (4) 1/0O Instance (1)

$ Data Attribute (3)
"Output I/0O & Variable"; $ Help string

[ParamClass]
[Params]
[EnumPar]

[Groups]

Copyright © 1999 Quin Systems Limited Page 25

Issue 2 PTS/DeviceNet Interface User’'s Manual
6. Hardware Configuration

6.1 DeviceNet Interrupts

Before attempting to use the PTS/DeviceNet Interface you must ensure that the CANbus
interrupt jumper J11 is correctly configured. The link between pins 1 & 2 enables the Servonet
port on the lower pair of connectors S6. The link between pins 11 & 12 enables the DeviceNet
port on the upper pair of connectors S5. Figure 2 below shows the correct configuration for
jumper J11.The location of the jumper pad and the connectors is shown in figure 3.

J11
/CANO IRQ : 1 2 :/IRQ5
/CANO IRQ : 3 4:/IRQ4
/CANO IRQ : 5 6 :/IRQ3
/CAN1IRQ : 7 8 :/IRQ5
/CAN1IRQ:9 10:/IRQ4
/CAN1IRQ: 11 12 : /IRQ3

Figure 2. CANbus Interrupt Jumper
6.2 DeviceNet Connections
The connections for the CANbus interface on the front panel 9 way plug and socket S6 are

shown below. Note that these comply with the CAN in Automation (CiA) draft standard
DS102 Version 2.0, CAN Physical Layer for Industrial Applications.

Pin no. Signal Pin no. Signal
1 Reserved 6 GND
2 CAN_L 7 CAN_H
3 CAN_GN | 8 ERROR
D
4 Reserved 9 CAN_V+
(7-13V)
5 CAN_SHL
D
(screen)

Table 17: DeviceNet Connections

Copyright © 1999 Quin Systems Limited Page 26

Issue 2 PTS/DeviceNet Interface User's Manual

6.3 CPU360 Board Layout

CPU360 module - component side

Top
Ja P4 P3]
1 1
|: S3
O
| J5 1
J3
= E o
|: S4 J9
1
] i J7
1
B
O -
J6 310
1 1
82 B
O
| L
S1
J11
| 1E

S6 J2

n n
o
oo

S5

[[

Bottom

Figure 3. Jumper and connector locations

Copyright © 1999 Quin Systems Limited Page 27

Issue 2 PTS/DeviceNet Interface User’'s Manual
A Statistics Display

The example below shows a typical statistics display produced by the shell costatand

dns> stat

Version 1.1

Packets Received 2 Transmitted 5 Errors 1

Last error was Acknowledgement error

Fragment msgs OK 0 NAKS O retries O timeouts O
States Estab Estab Closed

EPRs 0O 1000 O

OO, WN B

Line 1 shows the DeviceNet software version, in this case 1.1.

Line 2 shows the number of DeviceNet packets received and transmitted and the number of
errors detected since start-up.

Line 3 shows the last error detected. Once the error condition has cleared this line will not be
displayed. The error is one of the standard CANbus error conditions as follows:

. Stuff error - More than 5 equal bits have occurred in part of a received message where
this is not allowed. Stuff bits help synchronization by adding transitions to the message.
A stuff bit is inserted in the bit stream after 5 consecutive equal value bits have been
transmitted; the stuff bit being the opposite polarity to the 5 preceding bits.All message
fields are stuffed except the CRC, the ACK field and the End of Frame.

. Format error - The fixed format part of a received frame has the wrong format.

. Acknowledgement error - The message transmitted by the PTS was not acknowledged
by another node.

. Bit 1/0 error - During transmission of a message (with the exception of the arbitration
field) the PTS wanted to send a recessive bit (logic level 1) but the monitored CANbus
value was dominant or vice versa.

. CRC error - The CRC received for an incoming message does not match the value
calculated by the PTS for the received data.

Line 4 shows the statistics for fragmented messages as follows:

. msgs OK - The number of complete fragmented messages successfully transmitted
since start-up. A fragmented message will generally consist of more than 1 message
packet.

. NAKS - The number of messages which were NAKed. This means that the receiving

node ran out of buffer space for the message.

. retries - The number of transmitted fragments which had to be retried because an ACK
was not received within the timeout period.

Copyright © 1999 Quin Systems Limited Page 28

Issue 2 PTS/DeviceNet Interface User's Manual

timeouts - The number of fragmented message transmissions which had to be
abandoned because an ACK to a retried fragment was not received within the timeout
period. If an ACK to a transmitted message fragment is not received within the timeout

period, the fragment is retried once. If the retry also times out, the whole message
transmission is abandoned.

Line 5 shows the states of the connections. The first column is the Explicit Message
connection, the second column is the Polled 1/0O connection and the third connection is not
currently used. Possible states are as follows:

Closed - The connection does not exist.

Config - An I/O connection is in the configuring state. This means that the connection
has been opened but the expected packet rate (EPR) has not yet been set by the Master
node.

Estab - The connection is established for passing messages. The Explicit Message
connection changes to this state once it is opened. The 1/0O connection changes to this
state only after it has been opened and the EPR has been set.

Tmo - The connection has timed out. An I/O connection will time out if a packet is not
received within the time specified by the EPR.

Line 6 shows the expected packet rates (EPR) for the connections in milliseconds. The first
column is the EPR for the Explicit Message connection - normally set to zero. The second
column is the EPR for the Polled I/O connection - always positive for an established
connection. The third connection is not currently used.

Copyright © 1999 Quin Systems Limited Page 29

Issue 2 PTS/DeviceNet Interface User's Manual

B Logged Message Format

The following example shows a typical logged message display produced by the shell
commandlisp

dns> disp 1
2544.187 TX CO:A5 C1:65 A0:99 A1:60 CF:48 02 94 0B 02

The fields of the message represented as hexadecimal bytes are as follows:

. Timestamp - The time the message was sent or received in seconds and milliseconds
since start-up.

. TX/RX - TX means the message was transmitted by the PTS, RX means it was
received.
. CO - The Control O register in the message object structure. Each field in the two

Control registers is represented by 2 bits which are read as 01 when the field is zero and
10 when the field is set. The fields in this register are as follows:

7 6 5 4 3 2 1 0
Transmit Receive
Message Interrupt
Valid Interrupt Interrupt Pending
Enable Enable
Table 18:

C1 - The Control 1 register in the message object structure. The Message Lost field is
only valid for a received message. For a transmitted message the field becomes CPU
Updating. The fields in this register are as follows:

7 6 5 4 3 2 1 0
Remote .
Erame Transmit Message New Data
: Request Lost
Pending
Table 19:

. AO/A1 - A0 and the top 3 bits of A1 combine to form the 11 bit CAN message identifier.

. CF - The message configuration register. This contains the data length code (DLC)
which is the number of data bytes in the message, the direction code (Dir) which is 1
for transmit and the extended code (Xtd) which is always zero as DeviceNet uses only
standard 11-bit identifiers.

. Data - Up to eight bytes of data in hexadecimal format.

Copyright © 1999 Quin Systems Limited Page 30

Issue 2

= variable assignment

A

acknowledge error
assembly

I/O

variable

assembly class

B

baud rate
bit 1/0 error

block variable
write

C

CANbus interrupt
class
assembly
connection
devicenet
identity
message router
variable
class diagram
class ID
classes
component
configuration shell
configuring
hardware
PTS
connection
state

connection class
CPU360 board layout
CRC error

D

database

default variables
device profile
devicenet class
devicenet connections
disp command

PTS/DeviceNet Interface User's Manual

Index

11

28
13

13
13

28

20, 22

29
13
27

28

11

12
13

26

30

Copyright © 1999 Quin Systems Limited

displaying messages
DQ command

E

EDS
error
acknowledge
bit 1/0
CRC
format
stuff
error messages
undefined variable

F

format error
fragmentation
fragmented messages

H

hardware configuration
help command
host I/O

I/O input message

I/O output message
ID

class

instance
identity class
index

variable
input line definitions
instance

variable
instance ID
interrupt jumper
introduction

J

Ji1
jumper
interrupt

24
28
28
28
28
28

11

28
28
28

26

10

16
17

14
14
13

10

26

4 26

Page 31

Issue 2

L

LI

license key
disable
enable
list
input line definitions
list variables
logged message format

logging messages

M

MAC ID
map variables
mapping
variable
message
block variable write
I/O input
I/O output
single variable read
single variable write
message router class

O

object model

P

programming
PTS

S

shell
accessing
baud
default
disp
help
list
log
macid
map
stat

Copyright © 1999 Quin Systems Limited

N DN

U_IU'I

O
w

0y ®NNOyo

00
N

PTS/DeviceNet Interface User's Manual

unmap

wa

wocC
single variable

read

write
SK command
software license key
software versions
stat command
statistics
statistics display
stuff error

T

trigger variable

U

undefined variable
unmap variable

V

variable
default
index
instance
list
map
mapping
unmap
write always
write behaviour
variable class
variables
as parameters
assignment
guery command
trigger

wW

write always
write on change

N

28

28
28

11

11

5\1\1\107\'\10,07\'

11
11
11

Page 32

	Contents
	1. Introduction
	1.1 General

	2. Configuring the PTS for DeviceNet
	2.1 Hardware
	2.2 Software License Key
	2.3 Configuration Shell
	2.3.1 Accessing the Shell
	2.3.2 Changing the Baud Rate
	2.3.3 Changing the MAC ID
	2.3.4 Mapping Variables
	2.3.5 Variable Write Behaviour
	2.3.6 Displaying Statistics
	2.3.7 Logging Messages

	3. Programming the PTS
	3.1 Host I/O
	3.2 Variables

	4. PTS Device Profile
	4.1 Overview
	4.2 Device Description
	4.3 Object Model
	4.3.1 Classes
	4.3.2 Model Description

	4.4 I/O Access
	4.4.1 I/O Input Message Format
	4.4.2 I/O Output Message Format

	4.5 Single Variable Access
	4.5.1 Single Variable Read Message Format
	4.5.2 Single Variable Write Message Format

	4.6 Block Variable Access
	4.6.1 Block Variable Read Message Format
	4.6.2 Block Variable Write Message Format

	5. Electronic Data Sheet
	6. Hardware Configuration
	6.1 DeviceNet Interrupts
	6.2 DeviceNet Connections
	6.3 CPU360 Board Layout

	Index

